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Introduction

In addition to focus, several fitting adjustments must be
accomplished by the individual aviator to optimize performance of
Aviation Night Vision Imaging System (ANVIS, AN/AVS-6) night
vision goggles. These adjustments include vertical alignment,
tilt, interpupillary distance (IPD), and vertex distance (Loro,
1991; TC1-204, 1988; U.S. Army Aviation Center, 1991). The ANVIS
field-of-view is usually reported to be 40 degrees, and Walsh
(1989) found that the mean field-of-view for 5 sets of ANVIS was
39.8 degrees, but adjustment changes can limit an aviator's
ability to obtain a full and complete 40 degree field-of-view
(Loro, 1991; Verona and Rash, 1989). A restricted field-of-view
reduces performance on a variety of complex tasks (Wells and
Venturino, 1989). In addition, there has recently been
considerable interest in the possible operational impacts of
ANVIS adjustments. The specific impetus for this investigation
is a tasking memorandum from Headquarters, Medical Research and
Development Command relating to the potential contributions of
IPD adjustments to a Class A OH-58D mishap (Parry, 1992).

Walsh (1990) reported that the ANVIS field-of-view declines
from 40 degrees at 20 mm vertex distance to 27 degrees at 40 mm
vertex distance. Kotulak and Frezell (1991) also demonstrated
that increases in vertex distance produce systematic deceases in
goggle field-of-view. Kotulak (in preparation) has found that
changes in the vertex distance setting of ANVIS can have
substantial effects on the available field-of-view. He reported
that the as worn vertex distances ranged from 15 mm for the fifth
percentile aviator to 32 mm for the 95th percentile aviator..
Fields-of-view ranged from 40 degrees at vertex distances of 18
mm or less down to 32 degrees at the 32 mm vertex distance.
Vertex distances greater than 18 mm restrict the field-of-view in
direct proportion to the increase in vertex distance. The
majority of the extended vertex distances noted by Kotulak were
attributed to the lack of vertex distance adjustment range in the
ANVIS, rather than to deliberate or accidental misadjustment.

Four measures of field-of-view are relevant to the present
discussion. They are the single tube field-of-view, the
binocular field-of-view, the monocular lobe size, and the total
field-of-view. The average single tube field-of-view is the mean
of the angular sizes of the two single tube fields-of-view. The
binocular field-of-view is the angular area which is visible
through both tubes simultaneously. The monocular lobe size is
the combined angular extent of the two monocular lobes, which are
areas visible through only one tjbe. The total field-of-view
extends from the left to the right edge of the area visible
through either tube, and represents the total angular area
visible through one or both tubes. It consists of the binocular
field-of-view plus the monocular lobe size.
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Several theoretical analyses of the effects of changes in
vertex distance and IPD on ANVIS fields-of-view have been
conducted within the Visual Science Branch. Kotulak (1992)
concluded that increased vertex distance would reduce the single
tube field-of-view, and that decentr ion would produce
vignetting on one side of the field-of-view, reducing its size.
Specifically, nasal decentration would produce temporal
vignetting in both single tube fields, while temporal
decentration would produce nasal vignetting in both single tube
fields. McLean (1992) concluded that decentration would increase
the total field-of-view at 32 mm vertex distance, but not at 18
mm vertex distance, where it would remain 40 degrees regardless
of the extent of decentration. This argument is presented
graphically in Figures 1 and 2. McLean also predicted that, at
18 mm vertex distance, setting the ANVIS IPD to other than the
optimal distance for a subject will result in reductions of the
binocular field-of-view. The single tube fields-of-view will be
vignetted on one edge, but when both fields are combined, the
total field-of-view will be unchanged. This is shown in Figure
3. However, at a vertex distance of 32 mm, McLean expected ANVIS
to deliver a reduced total field-of-view, which would be restored
by decentration. This is shown in Figure 4. Thus, setting the
IPD of ANVIS to other than the separation matching the observer's
IPD should have the effect of transforming ANVIS into a partially
overlapped system. The contribution of IPD setting changes to
the size of the areas, the binocular field-of-view and the
monocular lobe, making up the total field-of-view were expected
to vary as a function of vertex distance.

Previous research at USAARL has also indicated that there is
a small loss in resolution (0.07 logMAR) at the periphery of
ANVIS fields-of-view when compared to the resolution at the
center of the field-of-view (Walsh, unpublished, cited in Karney,
1988). The term logMAR refers to the log of the minimum angle of
resolution. However, as this finding was never formally
documented in a report, controlled measurements of acuity were
included in the present experin"ent.

There is a small, but consistent advantage in resolution and
contrast sensitivity to be derived from binocular as opposed to
monocular viewing (Arditi, 1986; Boff and Lincoln, 1988). As an
ANVIS with its IPD set to other than the optimal value is also a
partially monocular device, changes in visual performance in the
monocular portions of the field-of-view might be expected.
However, Wiley (1989) found little impact of monocular viewing on
acuity with AN/PVS-5A night vision devices. Previous
investigators have noted strong effects of target contrast on
acuity with the AN/PVS-5A (Wiley, 1989) and with ANVIS (Kotulak
and Rash, 1992). Thus, lower acuity was also anticipated for low
contrast targets compared to high contrast targets.
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Left tube

SRight tube

Optimal IPD Nasal Temporal
Decentration Decentration

Figure 1. Predicted components of the field-of-view at 18 mm
vertex distance.

SLeft tube
Right tube

Optimal IPD Nasal Temporal
Decentration Decentration

Figure 2. Predicted components of the field-of-view at 32 mm
vertex distance.
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High Total Field of View

Monocular Lobe Size
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Figure 3. Relative contributions to the field-of-view at 18 mm
vertex distance.

Total Field of View

- Monocular Lobe Size

Binocular Field of View

Low
OptimoI Hign

Total ANV:S Decentrot on

Figure 4. Relative contributions to the field-of-view at 32 mm
vertex distance.
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Biberman and Alluisi (1992) have suggested that the
performance of night vision devices is severely compromised by
missetting the IPD. Hickok (1-992) has reported that missetting
ANVIS IPD by 10 mm can produce Snellen acuities of 20/200, or a
logMAR score of 1.0. An extensive examination of the available
data on this issue has led us to the belief that Hickok's data
were probably based on unpublished studies of the AN/PVS-5A night
vision goggle system conducted at USAARL in the early 1980's
(McLean, 1992). However, there is clearly a need for a well
documented investigation of the relationship between IPD setting
ard acuity in ANVIS.

The objectives of this research are to (1) verify the
theoretical predictions described above with regard to the size
of the components of the field-of-view as a function of changes
in vertex distance and IPD in ANVIS, (2) document the impacts of
changes in location in the field-of-view, vertex distance, and
IPD on acuity in ANVIS, and (3) replicate earlier research on the
impact of contrast on acuity with ANVIS.

Methods

Subjects

Ten volunteer subjects participated in the field-of-view
determinations. This group consisted of six males and four
females, with an average age of 30+10 years. Eight volunteer
subjects participated in the acuity determinations, four males
and four females with an average age of 28+8 years. All subjects
were able to achieve an 18 mm vertex distance and 20/45 acuity
(logMAR = .35) on the high contrast Bailey-Lovie acuity chart,
which is described below, through the ANVIS at the center of its
field-of-view before the field-of-view session. Two subjects
were unable to satisfy the acuity standard before the start of
the acuity testing due to astigmatism, and were excluded from
that portion of the experiment.

ANVIS

All measures were collected through a single flight
certified set of ANVIS, which was used throughout the experiment.
These ANVIS were attached to a customized mount and placed on an
optical rail. A chin and forehead rest was also attached to the
rail. This apparatus is shown in front and back quartering views
in Figures 5 and 6. A black drape, not shown in the figure, was
placed around the ANVIS tubes and over the mount to block stray
light. The ANVIS, mounted to this rail, was positioned 10 feet
from, and normal to, a black wall. Objective lens focusing and
the tilt, vertical, IPD, and vertex distance adjustments were
accomplished by the experimenters as outlined in Loro (1991).
The subjects' IPDs were determined clinically using an IPD ruler.
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Figure 5. Front view of the apparatus.

Figure 6. Rear view of the apparatus.
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The 18 mm vertex distance position for the ANVIS was established
using a House of Vision model 11 103 00 distometer (see Appendix
A); the 32 mm vertex distance position was determined using the
millimeter scale on the optical rail employed to position and
stabilize the ANVIS and the chin/head rest. The subjects focused
the diopter ring as outlined in Loro (1991) under the supervision
of the experimenters. Eye movements were permitted. The ANVIS
were used with Gentex polished-surface filters (see Appendix A)
placed over the objective lenses. These filters attenuate
incident radiant flux approximately 5 log units across the
wavelengths to which ANVIS is sensitive (Rash and Martin, 1989).
IPD settings were accomplished using an IPD mm ruler. IPD
decentrations were analyzed as absolute deviations from the
optimal IPD setting for that subject.

Field-of-view

An American Optical Project-O-Chart projector model 11082
with a Praboline slide model 11179 (see Appendix A) was used to
project a circular spot of light 0.27 degrees in size onto a mat
black wall. Under conditions of optimal IPD, horizontal limits
to the fields-of-view were assessed by determining the point at
which subjects reported that half of the spot remained visible.
Kotulak (in preparation) employed a similar procedure to measure
fields-of-view. Under both of the decentration conditions, the
subjects were instructed that one edge of each field would appear
clear, while the other would appear to be fuzzy. The "half the
spot visible" criterion was to be used on the clear side, while
on the fuzzy side, they were instructed to place the spot at the
most extreme position at which they could detect it. Fields-of-
view were determined for each tube of the ANVIS independently.
The objective lens of the tube not in use was covered with an
opaque cap. Two adjustments were applied to these field-of-view
data in order to correct them to infinity. The first adjustment
was to remove the IPD from the total and binocular field-of-view
assessments, as the single tube fields which contribute to these
measures are offset from each other by the amount of the IPD.
The second involved adjusting the sizes of the monocular fields-
of-view for the change in effective power of the objective lens
due to the 10 foot working distance. This correction added 0.36
degrees to each field-of-view. Lighting was provided by the
fluorescent room lighting at controlled reduced brightness. A
two-way all within subjects (2 levels of vertex distance, 18 mm
and 32 mm; 3 levels of IPD, 51 mm, optimal, and 72 mm) design was
applied to the field-of-view measures. Greenhouse and Geisser
(1958; 1959) corrections were calculated for these analyses. As
no outcomes were altered, unadjusted F tests are reported.
Regression analyses using the absolute amount of decentration to
predict the sizes of the components of the field-of-view were
also employed. Significance (p less than or equal to .05) is
indicated by an asterix (*) on the relevant figures. There were
28 degrees of freedom in these analyses. Absolute decentration
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was chosen as an independent measure because theoretical analyses
(Kotulak, 1992; McLean, 1992) indicated, and preliminary data
analyses confirmed, that direction of decentration of IPD was
irrelevant to the field-of-view measures.

Acuity

Acuity measures were taken using Bailey-Lovie high (90%)
contrast and low (8%) contrast visual acuity charts 4, 5, 6, and
7 (University of California, Berkeley, 1988; see Appendix A).
These charts provide letters of equal legibility, with the same
number of letters on each row, controlled letter and row spacing,
and a logarithmic progression of letter size (Bailey and Lovie,
1976). The acuity data were collected and analyzed as logMAR
scores. The scores were corrected for the difference in distance
to the acuity targets between the center and the periphery of the
field-of-view. Center field acuities were obtained with the
acuity chart centered in the binocular portion of the field-of-
view. Left and right limit acuities were measured with the
acuity chart against the left or right limit of the overall
visual field. For these conditions, the charts were placed so
that, for the high contrast condition, the outermost character on
the 0.5 logMAR line was placed as close to the edge as possible
while still remaining readable. For the low contrast condition,
this criterion was applied to the 0.8 logMAR line. Under
conditions of decentration, these latter measures were expected
to reflect monocular acuities, as well. Lighting was provided by
(1) the fluorescent room lighting at controlled reduced
brightness, and (2) two auxiliary dual tube 40 watt 48 inch
fluorescent light fixtures. These two auxiliary lights were
placed horizontally on stands 75 cm above the floor, 210 cm from
and 40 cm below the acuity targets, and were separated from each
other by 50 cm. They were set parallel to the wall. The
reflectors on the auxiliary lamps shielded the ANVIS from their
direct light. This arrangement provided luminances of 64.0,
71.9, and 59.6 candelas per meter squared on the Bailey-Lovie
charts at the left, center, and right extremes of the fields-of-
view employed in this experiment. These measurements were made
with a Minolta nt-I luminance meter (see Appendix A). This
lighting arrangement was chosen because, during pilot
experimentation, it yielded acuities in the range of those
reported by Kotulak and Rash (1992) for quarter moon conditions
using the Bailey-Lovie high and low contrast charts. A four-way
all within subjects (2 levels of vertex distance, 18 mm and 32
mm; 3 levels of IPD, 51 mm, optimal, and 72 mm; 2 levels of
location in the field-of-view, center and periphery; and 2 levels
of contrast, high and low) design was applied to the acuity
portion of this project. Greenhouse and Geisser (1958; 1959)
corrections were calculated for this analysis. As no outcomes
were altered, unadjusted F tests are reported. Regression
analyses using relative decentration of IPD to predict acuity
were also employed. Significance (p less than or equal to .05)
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is indicated by an asterix (*) on the relevant figures. There

were 22 degrees of freedom in these analyses.

Experimental sequence

The experimenters provided the subjects an initial briefing,
during which the subjects were asked to give informed consent to
participate in the experiment, and during which they were
familiarized with the experimental procedure and the apparatus to
be employed. The experimenters then measured the subject's IPD
in order to determine the subject's optimal IPD. The experiment
was divided into two sessions separated by a break. The first
session was devoted to field-of-view measures, while the second
consisted entirely of acuity measures. Each session required
roughly 45 minutes to complete. The field-of-view session began
with the subject focusing the ANVIS diopter ring. The
experimenters then set the vertex distance to 18 mm and the
optimal IPD. Monocular fields-of-view limits were determined for
the left and right tubes independently. The IPD was reset to 72
mm for the second set of measures, and to 51 mm for the final
set. The vertex distance was then adjusted to 32 mm, and the
entire sequence was repeated. All subjects received this same
sequence of conditions for the field-of-view determinations. The
second, or acuity session, again began with the subject focusing
the ANVIS diopter ring. The experimenters then set vertex
distance to either 18 or 32 mm, and the IPD to either optimum,
72 mm, or 51 mm. In this session, 4 subjects experienced the 18
mm vertex conditions first, while 4 experienced the 32 mm vertex
condition first. IPDs were presented in the same randomly
determined order at both vertex distances for a particular
subject. Overall, optimal IPD was presented first twice, second
once, and third five times. The 72 mm IPD was presented first
four times and second four times. The 51 mm IPD was presented
first twice, second three times, and third three times. At each
of these settings, acuity was measured in the center of the
visual field, first under high and then under low contrast
conditions, then at the left limit of the total field-of-view
under high and low contrast conditions, and finally at the right
limit of the total field-of-view under high and low contrast.
Two variations of the Bailey-Lovie chart were used in this
session. One was used for a set of high and low contrast
measures, and the other was used for the next set of measures.
The single alternation procedure was employed throughout the
session. The experimenters then conducted an exit briefing, and
dismissed the subject.

Results

The average single tube field-of-view is the mean of the
angular sizes of the left and right single tube fields-of-view.
For the average single tube field-of-view size, there was a
significant effect due to vertex distance (F(1,9) = 152.79, p =
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.000001), IPD (F(2,18) = 10.69, p = .0009), and a significant
vertex distance by IPD interaction (F(2,18) = 5.50, p = .014).
The single tube field-of-view was reduced at 32 mm vertex
distance and at other than optimal IPD. The interaction
indicates that the differences in field-of-view between the 18 mm
and 32 mm vertex distances are reduced at the 51 mm and 72 mm IPD
settings compared to the optimal setting. These data are
presented in graphical form in Figure 7. Regression analyses
applied to these data are presented in Figure 8 for the 18 mm
vertex distance condition and in Figure 9 for the 32 mm vertex
distance condition. In both cases, the equations are
significant, and accounted for substantial portions of the
variance.

The binocular field-of-view is that angular area visible
through both tubes simultaneously. For the binocular field-of-
view measure, there was a significant effect due to vertex
distance (F(1,9) = 135.81, p = .000001) and to IPD (F(2,18) =
13.07, p = .0003). The vertex distance by IPD interaction
(F(2,18) = 0.69, p = .52) was not significant. The binocular
field-of-view was greater at 18 mm vertex distance than at 32 mm
vertex distance, and was greater at the optimal IPD setting than
at the 51 mm or 72 mm settings for both vertex distances. These
data are presented in graphical form in Figure 10. Regression
analyses applied to these data are presented in Figure 11 for the
18 mm vertex distance condition and in Figure 12 for the 32 mm
vertex distance condition. In both cases, the equations were
significant, and accounted for substantial portions of the
variance.

The monocular lobe size is the sum of the two lobes which
represent the area visible to only one eye. For the monocular
lobe size measure, there was a significant effect due to vertex
distance (F(1,9) = 102.81, p = .000003), IPD (F(2,18) = 15.62, p
= .0001), and a significant vertex distance by IPD interaction
(F(2,18) = 9.22, p = .002). Monocular lobe size was smallest at
optimal IPD settings and at 18 mm vertex distance. The
interaction indicates that monocular lobe size increased more
rapidly with increasing decentration at 32 mm vertex distance
than at 18 mm vertex distance. These data are presented
graphically in Figure 13. Regression analyses applied to these
data are presented in Figure 14 for the 18 mm vertex distance and
in Figure 15 for the 32 mm vertex distance. In both cases, the
equations are significant, and accounted for substantial portions
of the variance.

The total field-of-view extends from the left to the right
edge of the area visible through either tube, and represents the
total angular area visible through one or both tubes. It
consists of the binocular field-of-view plus the monocular lobes.
For the total field-of-view, there was a significant effect due
to vertex distance (F(1,9) = 52.92, p = .00005), IPD (F(2,18)
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24.25, p = .000008), and a significant vertex distance by IPD
interaction (F(2,18) = 22.10, p = .00001). Total field-of-view
was generally greater at 18 mm vertex distance than at 32 mm
vertex distance, while the IPD effect and the IPD by vertex
distance interaction reflect the convergence of 18 mm and 32 mm
vertex distance total fields-of-view under conditions of
decentration. These data are presented in graphical form in
Figure 16. At 18 mm vertex distance, the total field-of-view was
insensitive to decentration, but at 32 mm vertex distance, the
total field-of-view increased with increasing decentration.
While decentration appears to restore total field-of-view at 32
mm vertex distance, it should be noted that this applies only to
the horizontal field-of-view. The field-of-view in the vertical
meridian remains reduced in the face of increasing decentration.
Regression analyses applied to these data are presented in Figure
17 for the 18 mm vertex distance condition and in Figure 18 for
the 32 mm vertex distance condition. In the 32 mm vertex
distance situation, the equation was significant, and accounted
for a substantial portion of the variance.

The acuity data from the present experiment will be reported
in logMARs. Table 1 contains conversions from logMARs to Snellen
denominators. Analysis of the acuity data revealed that vertex
distance had no effect on acuity (F(1,7) = 2.70, p = .15). IPD
did influence acuity (F(2,14) = 4.57, p = .03), suggesting that
acuity is slightly better at optimal IPD than it is under
conditions of decentration. This effect indicates decreasing
acuity with increasing decentration. Location in the visual
field strongly influenced acuity (F(1,7) = 181.18, p = .000003),
indicating that acuity was lower in the periphery than in the
center of the visual field. Contrast also had a highly
significant influence on acuity (F(1,7) = 1323.87, p = .000000),
indicating greater acuity with high contrast than with low
contrast stimuli. Location in the visual field interacted
significantly with contrast (F(2,14) = 36.53, p = .0005),
reflecting the reduced impact of low contrast in the periphery of
the visual field compared to its center. The interactions of
vertex distance and IPD (F(2,14) = 0.09, p = .91), vertex
distance and location in the visual field (F(1,7) = 2.56, p -

.15), IPD and location in the visual field (F(2,14) = 0.63, p
55), vertex distance and contrast (F(1,7) = 0.005, p = .95), IPD
and contrast (F(2,14) = 1.37, p = .29), vertex distance and IPD
and location in the visual field (F(2,14) = 3.11, p = .08),
vertex distance and IPD and contrast (F(2,14) = 0.16, p = .86),
vertex distance and location in the visual field and contrast
(F(1,7) = 5.32, p = .055), IPD and location in the visual field
and contrast (F(2,14) = 0.71, p =. 51), and the four-way
interaction of vertex distance and IPD and location in the visual
field and contrast (F(2,14) = 0.17, p = .85) did not achieve
significance. These data are presented in Figure 19 for 18 mm
vertex distance and in Figure 20 for 32 mm vertex distance.
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Table 1.

Conversion from IoQMAR to Snellen Denominators (20/ -)

IogMAR Snellen
Denominator

0 20.00
0.02 20.94
0.04 21.93
0.06 22.96
0.08 24.05

0.1 25.18

0.12 26.37
0.14 27.61
0.16 28.91
0.18 30.27
0.2 31.70

0.22 33.19
0.24 34.76
0.26 36.39
0.28 38.11
0.3 39.91

0.32 41.79
0.34 43.76
0.36 45.82
0.38 47.98
0.4 50.24

0.42 52,61
0.44 55.08
0.46 57.68
0.48 60.40
0.5 63.25

0.52 66.23
0.54 69.35
0.56 72.62
0.58 76.04

0.6 79.62
0.62 83.37
0.64 87.30
0.66 91.42
0.68 95.73

0.7 100.24
0.72 104.96
0.74 109.91
0.76 115.09
0.78 120.51
0.8 126.19

0.82 132.14
0.84 138.37
0.86 144.89
0.88 151.72

0.9 158.87
0.92 166.35
0.94 174.19
0.96 182.40
0.98 191.00

1 200.00
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Figures 21 through 24 present regression analyses employing
decentration as the independent variable and acuity as the
dependent variable under conditions of vertex distance, location
in the field-of-view, and contrast employed in this experiment.
Decentration was not a significant predictor of acuity in these
regressions. The functions predict acuity changes of 1 letter or
less on the Bailey-Lovie test charts for a decentration of 21 mm,
the largest decentration possible with ANVIS.

Discussion

Field-of-view

The single tube field-of-view results, which demonstrated a
reduction in the size of the single tube field-of-view at 32 mm
vertex distance compared to the 18 mm vertex distance, are
consistent with the results obtained by other investigators
(Kotulak, in preparation; Kotulak and Frezell, 1991; Walsh,
unpublished, cited in Karney, 1988; Walsh, 1989; Walsh, 1990).
These results are summarized and compared in Table 2. The low
standard deviations speak well of our measurement technique.

Table 2.

Single tube fields-of-view in degrees as a function of vertex
distance

Source 18 mm Vertex distance 32 mm Vertex distance

Walsh, 1989 39.8+.5
Walsh, 1990, Figure 7 39.6 32.5
Walsh, unpublished, 39.5
cited in Karney, 1988

Kotulak, in 39.8 33.4
preparation, Figure 8

This report 39.4+.3 33.1+1.3

The decreases in single tube and binocular fields-of-view,
and the increase in monocular lobe size seen at both 18 mm vertex
distance and at 32 mm vertex distance with increasing
decentration, as well as the increase in the size of the
horizontal field-of-view at 32 mm vertex distance with increasing
decentration are consistent with the theoretical analyses
conducted by Kotulak (1992) and by McLean (1992). Our findings
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in this regard are presented in Figure 25 for 18 mm vertex
distance, summarizing Figures 11, 14, and 17, and in Figure 26
for 32 mm vertex distance, summarizing Figures 12, 15, and 18.
The agreement with the theoretical analyses in Figures 3 and 4 is
particularly striking. It should be noted that decentration does
increase the total field-of-view at 32 mm vertex distance only
for the horizontal total field-of-view. These analyses predict
that the vertical field-of-view, which is also vignetted at 32 mm
vertex distance, would would remain reduced under decentration.

Acuity

The acuity data obtained from the center and the periphery
of the field-of-view were generally consistent with Walsh
(unpublished, cited in Karney, 1988) except for the unusually low
acuity he obtained under center field high contrast conditions.
Indeed, our acuity data closely match Kotulak and Rash's (1992)
results for the center of the field-of-view under both high and
low contrast conditions. These data are summarized and compared
in Table 3. The relative loss of acuity in the periphery of the
ANVIS field-of-view is greater than previously reported.

Table 3.

Acuity in logMAR at the center and periphery of the ANVIS field-
of-view for approximately equivalent lighting conditions

Source Center

High contrast Low contrast
Walsh unpublished, .51+.08 .66+.04
cited in Karney, 1988

Kotulak and Rash, 1992 .30+.08 .65+.15
This report .28+.05 .62+.05

Periphery

High contrast Low contrast
Walsh, unpublished, .58+.06 .73+.07
cited in Karney, 1988

This report .52+.05 .74+.05

Data are from Walsh's high luminance condition, Kotulak and
Rash's quarter moon condition, and for the present report, the 18
mm vertex distance, optimal IPD condition.
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Although the effect of IPD was significant, it represents a
small acuity loss, on average corresponding to one letter on the
Bailey-Lovie charts under the most extreme decentration
conditions. This is clearly not the severe deleterious effects
on acuity which Hickok (1992) suggested should accompany even
modest IPD decentration. Our results support the suggestion that
Hickok's numbers are based on unpublished data from the AN/PVS-5
system, and do not represent results obtained from the later
generation ANVIS (McLean, 1992). The present results reveal a
statistically significant, but operationally inconsequential
contribution of decentration to visual acuity, and do not support
Biberman and Alluisi's (1992) contention that missetting the IPD
will seriously reduce the performance of ANVIS.

The lack of an IPD by location in the visual field
interaction in the present results indicates that the impact of
peripheral versus central location in the field-of-view is the
same under all conditions of decentration. This suggests that
acuity is not reduced in the monocular lobes when compared to the
binocular portions of the field-of-view. Examination of the
angular sizes of the stimuli employed reveals that at the 10 foot
working distance employed in the present experiments, the lines
of Bailey-Lovie charts containing the thresholds had an angular
size of 3.5 degrees for the high contrast stimuli and 5 degrees
for the low contrast stimuli. Under conditions of IPD
decentration, these critical lines were contained within the
monocular lobe area in almost all cases in which peripheral
acuities were being measured, while they were contained in the
binocular portion of the field-of-view under optimal IPD
conditions. On the other hand, these same lines were in the
binocular field-of-view when central acuities were being
measured, regardless of the decentration condition. These
findings, consistent with Wiley's (1989) results comparing
monocular and binocular systems, suggest that the monocular lobes
have little impact on acuity with ANVIS.

Subjects in this experiment used the goggles under
conditions of decentration for only relatively brief periods.
Berkeley (1992) has suggested that decentration may have
deleterious effects on visual performance over the course of a
long mission. The present data do not address this issue,
although it has been suggested that ANVIS and other night vision
systems may produce visual fatigue (Brickner, 1989) and visual
illusions (Crowley, 1991) under certain conditions. Indeed,
several subjects commented on the unusual appearance of the
visual field under conditions of moderate to high decentration.
Further research into this question would be of value.
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Conclusions

At 18 mm vertex distance, binocular and monocular fields-of-
view decreased with decentration of IPD setting, while monocular
lobe size increased and the total field-of-view remained
unchanged. At 32 mm vertex distance, binocular and monocular
fields-of-view were reduced at optimal IPD, and decreased further
with increasing decentration, while the monocular lobe size
increased. At this vertex distance, the total horizontal field-
of-view was restored to 40 degrees by modest decentration.
Acuity was relatively insensitive to changes in vertex distance
and IPD, but was substantially reduced in the periphery of the
field-of-view and under conditions of low stimulus contrast.
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Appendix A.

List of equipment manufacturers

American Optical Corporation
Buffalo, NY 14215

Gentex Corporation
Optical Products Group
P.O. Box 315
Carbondale, PA 18407

House of Vision Instrument Co.
137 North Wabash Avenue
Chicago, IL 60602

Minolta Corporation
101 Williams Drive
Ramsey, NJ 07446

University of California
Multimedia Center
School of Optometry
Berkeley, CA 94270
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Appendix B.

Data Collection Forms
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Subject # ANVIS # Date

FOV

18mm VERTEX DISTANCE

--------------------- Optimal IPD -------------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit

-------------------- 72mm IPD--------------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit

-------------------- 5imm IPD--------------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit

32mm VERTEX DISTANCE

-------------------- Optimal IPD -----------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit

-------------------- 72ni IPD---------------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit

-------------------- Slmm IPD--------------------

Left FOV Right FOV
Left Limit Right Limit Left Limit Right Limit
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Subject # ANVIS # Date

Acuity

18mm VERTEX DISTANCE

Optimal IPD

Left Center Right
High Con Low Con High Con Low Con High Con Low Con

-- ---------------- - 2 m I D - - - - - - - - - -72nuuIPD...

Left Center Right
High Con Low Con High Con Low Con High Con Low Con

----------------- 51mm IPD
Left Center RightHigh Con Low Con High Con Low Con High Con Low Con

32mm VERTEX DISTANCE

--- -------------- Optimal IPD ------------

Left Center RightHigh Con Low Con High Con Low Con High Con Low Con

--------72mwm IPD ......
Left Center RightHigh Con Low Con High Con Low Con High Con Low Con

------------ -----.Slm IPD
Left Center RightHigh Con Low Con High Con Low Con High Con Low Con
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